玉米科学

基于改进卷积神经网络的复杂背景下玉米病害识 

来源:玉米科学 【在线投稿】 栏目:期刊导读 时间:2021-05-05
为解决田间环境复杂背景下病害识别困难、识别模型应用率低的问题,提出了一种基于改进卷积神经网络的玉米病害识别方法,探讨了数据集的品质对建立模型性能的影响。利用复杂背景下的玉米病害图像进行数据增强、背景去除、图像细分割和归一化等处理,设计了具有5层卷积、4层池化和2个全连接层的卷积神经网络结构,利用L2正则化和Dropout策略优化网络,对复杂背景下的玉米9种病害进行识别训练和测试,优化后的CNN模型平均识别精度为97.10%,比未优化的网络模型提高9.02个百分点。利用不同大小、不同品质的数据集对优选网络进行训练和测试,数据增强后比原始样本平均识别精度提高了28.17个百分点;将复杂背景去除后,模型性能进一步提升,识别精度达到97.96%;对数据集进行细分割处理后,平均识别精度为99.12%,表明卷积神经网络需要大量的训练数据,且数据集需有一定的代表性和品质。开发了基于移动端的玉米田间病害识别系统,系统测试结果表明,平均识别准确率为83.33%,系统能够实现田间复杂环境下的玉米病害识别。

上一篇:不同盐渍土中生物炭对玉米生理生长的影响
下一篇:没有了