玉米科学

作物增产30%以上!Science:中国科学家发现“明星基 

来源:玉米科学 【在线投稿】 栏目:综合新闻 时间:2022-07-28

田间应用尚待时日

中国科学院院士杨维才认为,这个基因的发现无疑具有重要的科学价值和应用前景,其应用将实现对水稻和其他作物的改良,并为保障国家粮食安全、生态安全作出更大贡献。

“‘吃'得更多,‘喝'得更多,‘消化'很好,应该是导致高产的原因。”周文彬说,团队进一步研究探明了OsDREB1C基因的调控机制--它在植物体内起到“分子开关”的作用,分别与作用于光合作用的碳同化基因、氮素吸收转运基因以及开花途径基因等多个下游靶基因直接结合并激活转录,提高相关基因的表达水平,进而协同调控水稻的光合效率、氮素利用效率及抽穗期等三个生理过程,实现高产早熟、绿色高效。

然而,联合国粮农组织的数据显示,近年来受新冠肺炎疫情、极端气候、地缘冲突等影响,全球饥饿人口持续上升,2021年世界受饥饿影响的人数达8.28亿。

论文共同第一作者、作科所李霞博士告诉《中国科学报》,他们在不同的作物中对转录因子OsDREB1C进行了增强基因表达的操作,并观察它们的田间表现。

中国工程院院士万建民说,该研究的重要性不仅在于发现单一基因可同时调控多个重要生理途径,打破长期存在于农业生产中的“高产”与“早熟”的矛盾,而且在于OsDREB1C基因在不同作物中的保守性功能使其具有巨大的应用前景与发展潜力,对推动农业可持续集约化生产具有重要意义。

然而,OsDREB1C基因的“能力”并没有止步于此--它还可以促进水稻早开花、早结实、提前收获。魏少博介绍,在北京,过表达OsDREB1C基因的水稻“日本晴”可较对照组提前抽穗13~19天;在杭州,过表达OsDREB1C基因可让“秀水134”抽穗期至少提前2天。

相关论文信息:

《科学》论文评审专家认为,该团队出色地完成了大量的田间试验工作,包括不同作物、不同地点的多年田间试验,呈现了全面而可靠的试验结果。如果将其应用到实际农业生产中,必将进一步推动水稻等作物实现可持续集约化生产。

此外,施用氮肥是农作物增产的重要措施之一。近年来,大量氮肥的过量施用不仅没有带来作物产量的持续提高,反而导致了严重的环境污染问题,如土壤酸化、水体富营养化、温室气体排放等。

结果显示,在水稻品种“日本晴”中过表达OsDREB1C基因,比对照组产量提高41.3%~68.3%;在南方栽培稻品种“秀水134”中过表达该基因,较对照组产量提高30.1%~41.6%。

118个候选因子:站在前人的肩膀上

“植物依靠光合作用固定碳素,依靠根吸收氮素,这两个过程紧密相连,对作物产量的形成至关重要。”周文彬说,如何在提高作物光合作用效率的同时,提高氮素利用效率、促进作物碳氮代谢协同,从而实现作物高产高效,是当前农业科学领域重要的科学问题之一。为此,科学家对比研究了产量比水稻、小麦高的玉米等作物。

“在不施用氮肥条件下,OsDREB1C基因过表达植株的产量已达到甚至高于对照组在施用氮肥条件下的产量水平,实现了‘减氮高产'。”李霞说。

然而,这是一项极具挑战性的工作。“只要有1%的希望我们就要尝试。”周文彬带领团队从他“执着”了20余年的光合作用研究入手。

与此同时,这一款明星基因还可提高水稻氮素利用效率。过表达OsDREB1C基因可使水稻对氮素的吸收和转运能力增强,将更多的氮素分配到籽粒中,氮素利用效率较对照组提高25.8%~56.6%。

从“绿色革命”改良作物株型到杂交水稻大面积推广,粮食单产增长了一倍多。

“该基因的增产幅度特别大,这是很少见的。”美国国家科学院院士朱健康希望,未来能把这个基因应用在生产上,让育种家和农民都能用到它,真正在田里看到这么高产的水稻或者其他作物。

提高作物单产是确保粮食安全主要途径

上世纪60年代开始的以矮化育种为特征的“绿色革命”,通过引入矮秆基因改良作物株型,以及提高栽培管理技术,使全世界水稻产量翻了一番。而由袁隆平院士主导培育的杂交水稻的大面积推广应用,实现了作物增产20%以上。

“因此,同时提高作物产量和氮素利用效率需要新的途径和策略。”周文彬说。

不过,周文彬强调,从实验室到农田,还有很多工作要做。下一步,该团队将深入开展该基因在主要粮食作物(包括玉米、大豆)中的功能和作用机制研究,并评估其抗逆性及田间产量性状,探索高产早熟新品种大田生产模式,加快突破制约作物单产水平快速提升的瓶颈。

上一篇:关注三夏|科学种植 丰收在望——一名大户的大豆
下一篇:没有了